Скоро Методы искусственного интеллекта в медицинских задачах классификации и регрессии [Алексан Халафян]

Статус
В этой теме нельзя размещать новые ответы.
VkurseBot

VkurseBot

Модератор
20 Сен 2020
0
782
50
Голосов: 0
#1

Методы искусственного интеллекта в медицинских задачах классификации и регрессии [Алексан Халафян]

2024-02-17_051251.png

Издание посвящено применению методов анализа данных в медицинских исследованиях. Рассмотрено использование как традиционных многомерных методов, так и современных методов машинного обучения, являющихся составной частью искусственного интеллекта. Изложение ведется на примерах общедоступных в Интернете датасет () медицинского характера, что облегчит понимание материала медиками и даст возможность читателю повторить приведенные результаты расчетов. Освещены методы машинного обучения Data Mining пакета STATISTICA: деревья решений – Общие деревья классификации и регрессии, Общие CHAD модели, Интерактивные деревья, Бустинг деревьев классификации и регрессии, Случайный лес регрессии и классификации; процедуры обучения – методы Опорных векторов, k-ближайших соседей, Байесовский классификатор; Автоматизированные нейронные сети; Кластерный анализ. Описана технология работы с мастером проектов Data Miner.
Методы машинного обучения открывают новые перспективы в создании медицинских систем поддержки принятия решений, интегрированных с искусственным интеллектом. Обработка и анализ средствами компьютерного зрения изображений, полученных рентгеновским оборудованием, томографами ускорят диагностику заболеваний, повысят ее точность. Прогностические модели, построенные на основе выявленных скрытых знаний в массивах медицинских данных, повысят качество идентификации заболеваний, оценки состояний больных, рисков, предсказаний развития и распространения заболеваний, эпидемий. При написании книги использована русскоязычная версия пакета STATISTICA 13 (Tibco, USA).

Для студентов и аспирантов, преподавателей вузов и научных работников, врачей и управленцев, экономистов и социологов, представителей естественнонаучных и инженерно-технических специальностей, всех кто в процессе обучения или профессиональной деятельности использует методы анализа данных. Простая и доступная для широкого круга читателей форма изложения, использование датасет свободного доступа, делают возможным самостоятельное изучение методов машинного обучения Data Mining.

Автор: Халафян Алексан Альбертович – доктор технических наук, профессор кафедры анализа данных и искусственного интеллекта факультета Компьютерных технологий и прикладной математики Кубанского государственного университета. Специалист в области анализа данных. Автор более 200 научных и учебно-методических работ, в том числе ряда известных учебников и учебных пособий.

Учебное пособие для вузов
352 стр.

Цена: 1 873 руб.

 
 
Последнее редактирование модератором:
Статус
В этой теме нельзя размещать новые ответы.

О нас

Слив платных курсов - скачать бесплатно

На форуме мы делимся сливами популярных курсов в различных областях знаний! Если вы хотите повысить свою профессиональную квалификацию, но не хотите тратить много на курсы, то вы попали по адресу.

VKURSE.INFO регулярно публикует:

  • слив курсов от лучших онлайн-школ, инфобизнесменов и блогеров;
  • вебинары, марафоны, мануалы, от популярных блогеров на тему здоровья и саморазвития;
  • торрент-курсы, книги и гайды, обучения веб-дизайну, программированию, создания сайтов, бизнеса, продвижения в социальных сетях актуальных сегодня.

Мы ежедневно обновляем нашу коллекцию, чтобы вы могли бесплатно найти и скачать необходимый слив курсов обучения

Быстрая навигация

Меню пользователя