Голосов: 0
#1
Машинное обучение и анализ данных на Python [2020]
Фоксфорд
Николай Осипов
На этом курсе мы погрузимся в одну из самых развивающихся, обсуждаемых и востребованных на рынке труда сфер - это Data Science (или Наука о Данных).
Сначала мы научимся самостоятельно работать с данными и анализировать их на языке Python, а потом научим компьютеры решать задачи за нас. Помимо изучения теории и выполнения домашних заданий, мы будем участвовать в соревнованиях по машинному обучению на платформе Kaggle.
Кому будет полезен курс:
Курс будет полезен тем, кто уже изучал основы программирования и хочет расширить область своих знаний, окунуться в Data Science, понять, что такое нейронные сети и искусственный интеллект.Какие знания даёт курс:
Уверенное знание Python и основных библиотек для DS, умение работать с алгоритмами машинного обучения для задач классификации и регрессии, практический опыт участия в соревнованиях по данной тематике.
Блок 1 - Основы Python (повторение, краткий обзор)
Блок 2 - Знакомство с библиотеками для Data Science
- Основные управляющие конструкции Python
- Функции
- Списки
- Объектно-ориентированное программирование
Блок 3 - Введение в машинное обучение
- Numpy
- Matplotlib
- Random
- Pandas
- Seaborn
- Sklearn
Блок 4 - Анализ данных на практике
- Основы линейной алгебры. Библиотека scipy. Функции потерь
- Алгоритмы линейной регрессии и классификации
- Настройка моделей: переобучение, регуляризация, подбор гиперпараметров, метрики качества
- Случайные деревья
- Композиции алгоритмов: бэггинг и случайный лес
- Соревнования на kaggle
- Обучение без учителя: кластеризация, понижение размерности
Блок 5 - Глубокое обучение
- Доверительные интервалы, проверка гипотез
- А/B - тестирование
- Статистические критерии
- Поиск закономерностей и зависимостей в данных
- Прогнозирование временных рядов
- Соревнования на kaggle
- Введение в нейронные сети. Задачи DL и AI
- Построение многослойного перцептрона
- Производная и градиент. Методы градиентного спуска
- Настройка нейронных сетей: подбор гиперпараметров, софтмакс, разбиение на батчи
- Знакомство с фреймворком pytorch
- Основы сверточных нейронных сетей
- Архитектуры CNN. Трансфер-лернинг
- Задачи компьютерного зрения: сегментация и детекция изображений
- Избранные задачи NLP. Соревнования на kaggle
- Создание искусственных данных с помощью GAN
- Путь Data Scientist’а
Для просмотра содержимого вам необходимо зарегистрироваться!Для просмотра содержимого вам необходимо зарегистрироваться!
Последнее редактирование модератором:
- Статус
- В этой теме нельзя размещать новые ответы.